Method for Classifying a Noisy Raman Spectrum

 

Research  

 

GTI Data   

 

Open databases created and software developed by the GTI and supplemental material to papers.  

 

Databases  


SportCLIP (2025): Multi-sport dataset for text-guided video summarization.
Ficosa (2024):
The FNTVD dataset has been generated using the Ficosa's recording car.
MATDAT (2023):  More than 90K labeled images of martial arts tricking.
SEAW – DATASET (2022): 3 stereoscopic contents in 4K resolution at 30 fps.
UPM-GTI-Face dataset (2022): 11 different subjects captured in 4K, under 2 scenarios, and 2 face mask conditions.
LaSoDa (2022): 60 annotated images from soccer matches in five stadiums with different characteristics and light conditions.
PIROPO Database (2021):People in Indoor ROoms with Perspective and Omnidirectional cameras.
EVENT-CLASS (2021): High-quality 360-degree videos in the context of tele-education.
Parking Lot Occupancy Database (2020)
Nighttime Vehicle Detection database (NVD) (2019)
Hand gesture dataset (2019): Multi-modal Leap Motion dataset for Hand Gesture Recognition.
ViCoCoS-3D (2016): VideoConference Common Scenes in 3D.
LASIESTA database (2016): More than 20 sequences to test moving object detection and tracking algorithms.
Hand gesture database (2015): Hand-gesture database composed by high-resolution color images acquired with the Senz3D sensor.
HRRFaceD database (2014):Face database composed by high resolution images acquired with Microsoft Kinect 2 (second generation).
Lab database (2012): Set of 6 sequences to test moving object detection strategies.
Vehicle image database (2012)More than 7000 images of vehicles and roads.           

 

Software  


Empowering Computer Vision in Higher Education(2024)A Novel Tool for Enhancing Video Coding Comprehension.
Engaging students in audiovisual coding through interactive MATLAB GUIs (2024)

TOP-Former: A Multi-Agent Transformer Approach for the Team Orienteering Problem (2023)

Solving Routing Problems for Multiple Cooperative Unmanned Aerial Vehicles using Transformer Networks (2023)
Vision Transformers and Traditional Convolutional Neural Networks for Face Recognition Tasks (2023)
Faster GSAC-DNN (2023): A Deep Learning Approach to Nighttime Vehicle Detection Using a Fast Grid of Spatial Aware Classifiers.
SETForSeQ (2020): Subjective Evaluation Tool for Foreground Segmentation Quality. 
SMV Player for Oculus Rift (2016)

Bag-D3P (2016): 
Face recognition using depth information. 
TSLAB (2015): 
Tool for Semiautomatic LABeling.   
 

   

Supplementary material  


Soccer line mark segmentation and classification with stochastic watershed transform (2022)
A fully automatic method for segmentation of soccer playing fields (2022)
Grass band detection in soccer images for improved image registration (2022)
Evaluating the Influence of the HMD, Usability, and Fatigue in 360VR Video Quality Assessments (2020)
Automatic soccer field of play registration (2020)   
Augmented reality tool for the situational awareness improvement of UAV operators (2017)
Detection of static moving objects using multiple nonparametric background-foreground models on a Finite State Machine (2015)
Real-time nonparametric background subtraction with tracking-based foreground update (2015)  
Camera localization using trajectories and maps (2014)

 

                                                                                                                                                                                                                             
 
                                                                   
 
                                                                                                                                                             
 
      

 

 

Method for Classifying a Noisy Raman Spectrum Based on a Wavelet Transform and a Deep Neural Network

On October 26th at 12:00, Virtual seminar.

Andrés Bell, researcher at the GTI, delivered a virtual seminar on the paper “Method for Classifying a Noisy Raman Spectrum Based on a Wavelet Transform and a Deep Neural Network” authored by L. Pan et al. published in the IEEE Access on August 2020. 

Abstract

This paper proposes a new framework based on a wavelet transform and deep neural network for identifying noisy Raman spectrum since, in practice, it is relatively difficult to classify the spectrum under baseline noise and additive white Gaussian noise environments. The framework consists of two main engines. Wavelet transform is proposed as the framework front-end for transforming 1-D noise Raman spectrum to two-dimensional data. This two-dimensional data will be fed to the framework back-end which is a classifier. The optimum classifier is chosen by implementing several traditional machine learning (ML) and deep learning (DL) algorithms, and then we investigated their classification accuracy and robustness performances. The four MLs we choose included a Naive Bayes (NB), a Support Vector Machine (SVM), a Random Forest (RF) and a K-Nearest Neighbor (KNN) where a deep convolution neural network (DCNN) was chosen for a DL classifier. Noise-free, Gaussian noise, baseline noise, and mixed-noise Raman spectrums were applied to train and validate the ML and DCNN models. The optimum back-end classifier was obtained by testing the ML and DCNN models with several noisy Raman spectrums (10-30 dB noise power). Based on the simulation, the accuracy of the DCNN classifier is 9% higher than the NB classifier, 3.5% higher than the RF classifier, 1% higher than the KNN classifier, and 0.5% higher than the SVM classifier. In terms of robustness to the mixed noise scenarios, the framework with DCNN back-end showed superior performance than the other ML back-ends. The DCNN back-end achieved 90% accuracy at 3 dB SNR while NB, SVM, RF, and K-NN back-ends required 27 dB, 22 dB, 27 dB, and 23 dB SNR, respectively. In addition, in the low-noise test data set, the F-measure score of the DCNN back-end exceeded 99.1% while the F-measure scores of the other ML engines were below 98.7%.